## Closing Wed: $\quad$ HW_3A, 3B $(6.1,6.2) \quad$ Quick Review:

Closing Mon, Jan 30: HW_3C (6.3) Visit office hours 1:30-3:00pm in PDL C- 4.9 Antiderivatives (tomato problems) 339 5.1/2: Riemann sums, Integral Notation 5.3: Fundamental Theorem of Calculus 5.4: Net/Total Change (abs. values) 5.5: Substitution (several problems)
6.1: Area between curves
6.2: Volumes by cross-sectional slicing

Please bring old exam and/or old homework questions to lecture on Wednesday.

### 6.2 Finding Volumes Using

## Cross-Sectional Slicing



If we can find the general formula, $\mathrm{A}\left(\mathrm{x}_{\mathrm{i}}\right)$, for the area of a cross-sectional slice, then we can approximate volume by:

Volume of one slice $\approx A\left(x_{i}\right) \Delta x$
Total Volume $\approx \sum_{i=1}^{n} \mathrm{~A}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}$


This approximation gets better and better with more subdivisions, so we say

$$
\text { Exact Volume }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathrm{~A}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}
$$

And we conclude
Volume $=\int_{a}^{b} A(x) d x$
$=\int_{a}^{b}$ "Cross-sectional area formula" $d x$

Volume using cross-sectional slicing

1. Draw! Cut perpendicular to the axis of rotation.
Note: If you draw a line at the cut, the axis you cut across is the variable you are using!
2. Draw a typical cross-section, label $\Delta x$ or $\Delta y$ and label $x$ or $y$, appropriately.
3. Label everything in terms of the appropriate variable.
4. Area? Find the formula for the area of a cross-sectional slice.
Disc: $\quad$ Area $=\pi(\text { radius })^{2}$
Washer: $\quad$ Area $=\pi(\text { outer })^{2}-\pi(\text { inner })^{2}$
Square: $\quad$ Area $=($ Height $)($ Length $)$
Triangle: $\quad$ Area $=1 ⁄ 2($ Height $)($ Length $)$
5. Integrate the area formula.

Example: Consider the region, $R$, bounded by $y=\sqrt{x}, \mathrm{y}=0$, and $\mathrm{x}=1$. Find the volume of the solid obtained by rotating $R$ about the $x$-axis.

(b)

## Example: Consider the region, R,

 bounded by $y=\sqrt{x}, \mathrm{x}=0$, and $\mathrm{y}=1$. Find the volume of the solid obtained by rotating $R$ about the $y$-axis.Example: Consider the region, R , bounded by $y=x$ and $y=x^{4}$. Find the volume of the solid obtained by rotating $R$ about the $x$-axis.
1.Draw and label!
2.Cross-sectional area?
3. Integrate area.


Example: Consider the region, R , bounded by $y=x$ and $y=x^{4}$. ( R is the same as the last example).
(a) Now rotate about the horizontal line $y=-5$. What changes?
(b) Now rotate about the horizontal line $y=10$. What changes?

## Example:

Set up an integral for find the volume obtained by rotating the region bounded by $y=x^{3}, y=8$, and $x=0$ about the vertical line $x=-10$.

## Example:

(From an old final and homework)
Find the volume of the solid shown.
The cross-sections are squares.

1.Draw and label!
2. Cross-sectional area?
3. Integrate area.

## Summary (Cross-sectional slicing):

1. Draw Label
2.Cross-sectional area?
2. Integrate area.

This method has one major limitation:
If the cross-sections are perpendicular to the x -axis, then you must use dx .

If the cross-sections are perpendicular to the $y$-axis, then you must use dy.

What if we were rotating about the x -axis and we wanted to use dy (or around $y$ axis and we want to use dx )?
Cross-sectional slicing wouldn't work!
We need another method. That is what we will do in 6.3.

